Parameterized and Approximation Algorithms for Boxicity

نویسندگان

  • Abhijin Adiga
  • Jasine Babu
  • L. Sunil Chandran
چکیده

Boxicity of a graph G(V, E), denoted by box(G), is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes in R. The problem of computing boxicity is inapproximable even for graph classes like bipartite, co-bipartite and split graphs within O(n)-factor, for any ǫ > 0 in polynomial time unless NP = ZPP . We give FPT approximation algorithms for computing the boxicity of graphs, where the parameter used is the vertex or edge edit distance of the given graph from families of graphs of bounded boxicity. This can be seen as a generalization of the parameterizations discussed in [4]. Extending the same idea in one of our algorithms, we also get an O ( n √ log log n √ log n ) -factor approximation algorithm for computing boxicity, which, to our knowledge, is the first o(n) factor approximation algorithm for the boxicity problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameterized Algorithms for Boxicity

In this paper we initiate an algorithmic study of Boxicity, a combinatorially well studied graph invariant, from the viewpoint of parameterized algorithms. The boxicity of an arbitrary graph G with the vertex set V (G) and the edge set E(G), denoted by box(G), is the minimum number of interval graphs on the same set of vertices such that the intersection of the edge sets of the interval graphs ...

متن کامل

Sublinear approximation algorithms for boxicity and related problems

Boxicity of a graph G(V, E) is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes in Rk. Cubicity is a variant of boxicity, where the axis parallel boxes in the intersection representation are restricted to be of unit length sides. Deciding whether boxicity (resp. cubicity) of a graph is at most k is NP-hard, even for k = 2 or 3. Computing thes...

متن کامل

A Constant Factor Approximation Algorithm for Boxicity of Circular Arc Graphs

Boxicity of a graph G(V,E) is the minimum integer k such that G can be represented as the intersection graph of k-dimensional axis parallel rectangles in R. Equivalently, it is the minimum number of interval graphs on the vertex set V such that the intersection of their edge sets is E. It is known that boxicity cannot be approximated even for graph classes like bipartite, co-bipartite and split...

متن کامل

Geometric Representation of Graphs in Low Dimension

An axis-parallel k–dimensional box is a Cartesian product R1 × R2 × · · · × Rk where Ri (for 1 ≤ i ≤ k) is a closed interval of the form [ai, bi] on the real line. For a graph G, its boxicity box(G) is the minimum dimension k, such that G is representable as the intersection graph of (axis–parallel) boxes in k–dimensional space. The concept of boxicity finds applications in various areas such a...

متن کامل

Efficient Approximation Algorithms for Point-set Diameter in Higher Dimensions

We study the problem of computing the diameter of a  set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1201.5958  شماره 

صفحات  -

تاریخ انتشار 2012